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Damage Spreading in a Gradient 
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We propose a new method of analyzing the frozen-chaotic transition in a 
cellular automaton by propagating damage in a gradient. We obtain estimations 
for p, and for the critical exponents for the Kauffman model and the mixture of 
OR and XOR rules. 
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The dynamic phase transition in celtular automata between a frozen and a 
chaotic phase is of interest because of its various applications in biology 
and statistical physics and has been intensively studied in the last 2 years. It 
was first described in the Kauffman model, (1-5~ a random mixture of all 
possible Boolean rules, but is also found in various other mixtures of 
rules (6'7) and even at usual thermodynamic transitions. (8) 

The dynamic phases of automata are characterized by the behavior of 
the trajectories in phase space. If one considers binary variables a i =  0, 1, 
the distance O between two configurations {ai} and {Pi} can be defined 
through 

1 N n(t) =SI, y'=l [~ (1) 

where N is the number of sites and t the time. If one considers two con- 
figurations that were initially close, i.e., small distance of order 1IN at t = 0, 
the phase is called frozen if after a long time the average distance is zero 
(for N--* oo ) and is called chaotic if it is nonzero. 
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In the (finite-dimensional, quenched) Kauffman model one considers a 
regular lattice and for each sites one chooses a Boolean function of the 
variables on the • nearest neighbors of this site. This Boolean function is 
picked such that the 2 ~ binary numbers that characterize its output values 
are 1 with probabili ty p and 0 otherwise. Once the functions are deter- 
mined they are kept for all times the same. p is a parameter  of the model 
and one knows (1"2) that for 0~<p~<pc one has a frozen phase and for 
Pc < P ~<0.5 a chaotic phase. One has Pc ~0.3  for the square lattice. (5) 

If one chooses the functions for the sites not among all the 2 2~ possible 
ones, but within a restricted, properly chosen subset of functions, one can 
obtain a similar phenomenon. So, for the X O R - O R  mixture one lets the 
function on a site be OR with probability p and XOR otherwise. The OR 
function of ~ variables is zero iff all ~ entries are zero and the XOR of ~c 
variables is one iff the sum of all K entries is odd. For  0 < p < Pc one finds a 
chaotic phase and for pc<p<~ 1 a frozen phase in 2d. (7) On the square 
lattice Pc is about  0.4. 

The usual numerical method of determining Pc has been: fixing a value 
of p, start with two configurations that differ only at a few sites and watch 
how they both develop in time under the application of the same set of 
rules. This method, however, has to cope with large statistical fluctuations 
and slow relaxation toward the final state close to Pc, which makes it very 
time-consuming on a computer. In this paper  we present an alternative 
method, which also yields some critical exponents, and show its perfor- 
mance for two examples: the Kauffman model and the X O R - O R  mixture 
on the square lattice of size L x L. 

Instead of having the same value of p in the whole system, we impose 
a gradient in the vertical direction. (1~ So, at the top line we choose our 
functions according to a probability p(1), at the bot tom line according to 
p(L),  and for the intermediate lines j according to the interpolated value 

p( j )  = p(1 ) + [ p(L  ) - p( 1 ) ] ( j -  1 )/(L - 1 ) (2) 

In the horizontal direction the value of p is kept constant and we impose 
periodic boundary conditions. 

We choose p ( t )  such that it lies in the chaotic phase and p(L)  such 
that it lies in the frozen phase; how far inside the frozen phase will become 
clear soon. We consider two configurations, the first chosen randomly and 
the second equal to the first on all sites except on line one, where its values 
are exactly flipped with respect to the first configuration (maximum 
damage at the first line). We then apply our (quenched) set of rules many 
times. The "damage," i.e., the  sites where the two configurations differ, 
evolves from line one toward the bottom. But since after a certain line j it 
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will encounter values of p(j) that belong to the frozen phase, the 
propagation of the damage will be suppressed, p(L) is chosen such that 
even after very long times the two configurations stay identical on line L, 
i.e., the damage never reaches the bottom. In the thermodynamic limit 
L-~  oc this would occur for p(L)= Pc, but in a finite system one has a 
finite instead of an infinitesimal gradient and the damage penetrates 
somewhat into the frozen phase. 

Suppose we have fixed L, p(1), and p(L). We then calculate the den- 
sity p(j) of the total damage per line, i.e., the number of sites in line j on 
which the two configurations have been different at least once, divided by 
L. The total damage, i.e., the sites that have been damaged at least once, 
forms a cluster that is connected to the top and does not touch the bottom. 
Its total mass is equal to L Zj P(j) and we call Pm the average position of 
its outer boundary. For  a concrete calculation of Pm it is, however, easier 
to consider the sites that lie on the other side of this boundary. We use 

Pm= p ( L )  -1- Ep(1) - p ( L ) ]  ~/7 L2 (3) 

where ~/~ is the number of all sites that have never been damaged and that 
are connected to the bottom line via nearest neighbor relations through 
other sites that have never been damaged, p(j) and Pm are obtained after 
so many iterations that the total damage no longer changes. More 
precisely, we iterate to time steps such that for no line j the p(j) is more 
than 0.1% different from the value it had at time step to/2. For L = 192 we 
needed about 500 time steps, and for L - -768  about 15,000 time steps. We 
repeat our simulation m times, choosing each time a different set of 
functions and a different initial configuration, p(j) and Pm are averages 
over these samples. 

We implemented multispin coding (64 sites/word updated 
simultaneously) in our program, which was vectorized on a Cray XMP 
yielding a speed of about 66 million updates/sec (MHz) for the Kauffman 
model and of about 75 MHz for the XOR-OR mixture. Our updating uses 
only logical bit-by-bit operations. For  instance, for the Kauffman model on 
the square lattice we construct for each of the 16 different possible con- 
figurations of the nearest neighbors a mask (of 64 bits = sites) that is one if 
the site has this configuration and zero otherwise. The new state of the sites 
is obtained via an AND with the word that contains the (quenched) out- 
puts of the functions for this configuration followed by an OR of the results 
for all the 16 configurations. If one calls NR(i, j, k), k = 1 ..... 16, the 16 
possible outputs of the rule at the sites in word (i, j )  and N1,..., N4 the four 
words that contain the nearest neighbor sites to the sites contained in word 
N(i, j), then in the program the 16 masks are constructed via 
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M1 = AND(N1, N2, N3, N4) 

M2 = AND(N1, N2, N3, NOT(4))  

M16 = AND(NOT(N1) ,  NOT(N2),  NOT(N3),  NOT(N4))  

and the new values at the sites are given by 

N(i, j )  = OR[AND(NR(i ,  j, 1 ), M1) ..... AND(NR(i,  j, 16), M16)]  

Due to the nature of multispin coding, we are limited to sizes L = l x 64, 
le  {1, 2,..}. To calculate Y in Eq. (3), we use the burning method (9) also 
in multispin coding. 

The relevant quantity controlling the finite-size effects is the gradient 
V p =  ]p(1)-p(L)I/L.  In order to separate its influence from other finite- 
size effects, we tried to keep p(1) and p(L) fixed and to vary only L. 
Figure 1 shows p(p) for both models for different values of Vp. We see that 
for smaller Vp the profile becomes sharper on the p axis and expect that it 
might fall to zero at Pc for Vp---, 0. In the chaotic phase we see some 
transient due to the fact that we force the line at p(1) to have all sites 
damaged. 

To better control the finite-size effects, we propose the scaling law for 
P ~ P c  and V p ~ 0  

p(p) = (Vp)X f ( ( p  - pc)(Vp)-Y) (4) 

where f is a scaling function. In the thermodynamic limit Vp --+ 0 we expect 
p to behave like the order parameter, i.e., p oc ( p -  pc) ~, so that /~ = x/y. 
Figure 2 shows the scaling according to Eq. (4) with the parameters Pc, x, 
and y adjusted such that one gets data collapse for different Vp. We 
find for the Kauffman model Pc = 0.299 _+ 0.005, x = 0.06 + 0.05, and 
y = 0 . 4 5 + 0 . 1 0  and for the XOR-OR mixture Pc = 0.395 + 0.004, 
x = 0.20 + 0.03, and y = 0.6 +_ 0.2, i.e., for all these values the collapse is 
more or less reasonable. We see that this method is quite sensitive to Pc 
and quite insensitive to y. 

The pm(Vp) defined in Eq. (3) turns out to have quite small statistical 
error bars (about 0.5 %) even for few statistics. We extrapolate in Fig. 3 the 
value of pm(Vp) to the limit Vp --* 0, supposing a convergence of the type 

pm(Vp) -  pro(0) oc (Vp) x (5) 

where we took for the XOR-OR mixture the value of x that we found from 
the data collapse of Fig. 2. We find for the extrapolated values Pm= 
0.2986_+0.0010 for the Kauffman model and pm=0.392+0.002  for the 
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Fig. l. Plot of p(j) as a function of p(j) for different gradients Vp for (a) the Kauffman 
model and (b) the XOR OR mixture. Parentheses following the values of Vp show the 
number  of samples rn over which we made the statistics. 
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Fig. 3. Plot of p,, as a function of (Vp) x for (O) the Kauffman model with x=0.6 and (A) 
the XOR-OR mixture with x = 0.6; the statistics are the same as in Fig. 1. 

X O R - O R  mixture. Although both Pm values lie within the error bars of Pc, 
we cannot exclude that asymptotically Pm does not coincide with Pc- Since 
the frontier is quite asymmetric (i.e., holes in the chaotic phase, no holes in 
the frozen phase), a scenario in which even in the limit Vp ~ 0 the frontier 
does not converge to a sharp value of p is possible and in three dimensions 
even quite probable. In this case Pm will not go to Pc for Vp ~ 0. A further 
investigation of the length, structure, and asymmetry of this frontier would 
certainly be very interesting. 

We have studied the damage frontier into a gradient and looked at the 
form of its profile p(p) .  Using scaling laws for the profile, it is possible to 
extract quite precise values for the critical concentration Pc. Still, our Pc for 
the Kauffman model is a little larger than the value 0.29 obtained in refs. 
3-5 and it is not clear which of the two estimates is better. The average 
concentration Pm of the outer frontier can be determined even more 
precisely, but it yields numbers that seem to lie marginally in the chaotic 
phase. It  is, however, possible that Pm =/: Pc if the frontier has a finite width 
in the thermodynamic limit. In ref. 10 a similar type of method had been 
applied to percolation. There Pm agrees with Pc in 2D and is larger than Pc 
in 3D. It is not completely clear which of the two situations applies to our 
case. This point should be further investigated. We looked at two values of 
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p that characterize the damage frontier; many others can be defined and it 
would be interesting to study how they behave and if they can yield 
independent and more precise determinations of Pc. 
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